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The spin-echo attenuation in NMR field-gradient diffusometry experiments is treated for the
tube model in a time scale longer than the entanglement time 7.. The theory comprises the Doi-
Edwards [M. Doi and S. F. Edwards, The Theory of Polymer Dynan...s (Clarendon, Oxford, 1986)]
limits of the (anomalous) segment displacement as well as the (ordinary) center-of-mass diffusion.
This formalism is to be distinguished from formalisms for anomalous diffusion on fractal networks:
The reptation mechanism implies an intrinsically different character of the displacement probability
density. It is shown that the expressions usually applied in NMR diffusometry are inadequate for
the reptation problem and can cause misinterpretations. Applications of the formalism to polymer
chains in bulk and confined in porous media are discussed.

PACS number(s): 61.25.Hq, 66.10.—x

INTRODUCTION

Depending on the time limit, the mean-square dis-
placement of segments of entangled polymers is predicted
to obey certain anomalous power laws as concerns the
variation of the diffusion time, that is, (r?) = at®, where
0 < k <1 and « is a constant. The most prominent
theory in this context is the reptation-tube model [1, 2].
Characteristic time constants, the entanglement time 7e,
the (longest) Rouse relaxation time 7g, and the tube dis-
engagement time 74, were introduced. The exponents
predicted in the frame of the tube model are k = 1/2 for
t<Te,k=1/4for 7. <t < 7R,k =1/2 for Tp < t < 74,
and k =1 for t > 74.

The limits leading to root-mean-square displacements
greater than 100 A in diffusion times ¢ < 1 s, as they
are typical for field-gradient NMR diffusometry [3-5], are
principally accessible by this technique [6-8]. It is there-
fore important to know how the predicted time depen-
dences reveal themselves in such experiments.

In pulsed-gradient experiments, spin echoes are atten-
uated by diffusion according to the incoherent dynamical
structure factor, that is, the ensemble average

Aaisr(k?,8) = (exp{ik - T(8)}), - (1)

In this expression, a wave vector k = v§G has been de-
fined formally. The quantity «y is the gyromagnetic ratio,
6 is the width of the field-gradient pulses, ¢t > § is the
effective diffusion time between the gradient pulses, and
G is the gradient of the magnetic flux density during the
gradient pulses. The segment displacement r(t) during
t may be analyzed into r(t) = rg(t) + £(t), where rg(t)
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is the displacement of the center of gravity of the poly-
mer chain and F(t) is the segment displacement relative
to a reference frame fixed in the center of gravity. In the
limit ¢t <« 74, F(t) essentially is the segment displacement
in the initial tube.

Center-of-gravity diffusion follows Fick’s law, whereas
segment displacements in the tube do not. As the two
displacement contributions are uncorrelated, we may fac-
torize Eq. (1), resulting in

Auis (K2, 8) = (exp{ik - £(t) })s (expik - rg(8)}),
= fidiﬂ'(kz, t) exp{—kth}, (2)
where Agig(k?,t) = (exp{ik - ¥(t)}); and D is the center-
of-gravity diffusion coefficient. The problem is now to

find an expression for the attenuation factor for segment
diffusion in the tube.

SEGMENT DIFFUSION
IN THE TUBE-REPTATION MODEL

The segment displacement in the Euclidean space ¥(t)
is connected with a displacement s(t) measured in curvi-
linear coordinates along the tube. That is, the end-to-end
vector of the curvilinear path of length s(t) is given by
F(t). Assuming a Gaussian probability density for the
end-to-end vector of a given path length s(t), we find

Aan0%6= </ (ge%r‘a!s(t)|>_3/2
X exp {—-2—;7%)—'} exp{ik - T} d3f>8

- <exp {—%k2a|s(t)|}>a : (3)
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where a is the step length of the primitive path [2]. For
t < 74 the curvilinear segment displacements may be
considered as the result of a one-dimensional ordinary
diffusion process, i.e., they are distributed according to
a Gaussian probability density. Hence
52
(t))}

Aual®,0)= [ n( o) exp{ -

X exp {—%k2a|s(t)|} ds
o { D)

72
xerfc {

k2a+/(s%(t)) (4)
6v/2 '

MEAN-SQUARE CURVILINEAR

DISPLACEMENT

The mean-square curvilinear segment displacement is
given by [2]

D 2Nb? tp?
2 o P
(5(t) =2 N b 3n2 = p? (1 exp{ TR })

Dy 2by/ Dyt
~ 22—V 5
Nt Vam 18908 )

where Do = kgT/( is the monomeric diffusion coefficient.
¢ is the friction constant of a Kuhn segment of length b.
The polymer chain is assumed to be composed of N Kuhn
segments. The approximation implies the correct limits
for t € 7p and t > T (see [2]).

Equation (5) is valid in the limit ¢ < 74. In the op-

posite limit, that is, ¢ z T4 > Tgr, the treatment of
the mean-square curvilinear segment displacement can
be considered as a one-dimensional restricted-diffusion
problem with reflecting boundaries at curvilinear tube
coordinates £z, = 0 and z, = L =~ L;, where L; is the
tube length. The free-diffusion length L depends on the
position of the considered segment in the tagged chain.
Let P(zs,Zs0,t) be the probability density that the seg-
ment is at a position z, at time ¢ if it was at the position
Tg40 at time 0. The diffusion equation

o Dy 9?
Ep(msa (E,o,t) - ]V(') a P(maa:’:so’t) (6)
must be solved for the boundary conditions
O P(@e2e0,Olerm0 = 0 ™
a:l:s Tgy T50, x,=0,L — Y.

The solution is
o0
2
P(z,,z50,t) = % + ; I cos (%pm,) cos (%p:cso)

Xexp{-— (%p)z?\;t} 8)
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The mean-square curvilinear displacement is then

(o) = [ o, / ’

Combining Egs. (8) and (9) leads to

o= () X Xk [1-e{- () R04}]

dz,
20 (1}, - st)ZP(xsy stat)-

(9)

P odd
2204
10)
IZDgt (
1+ NILS
_[2Ret it —:——Lz"’ o 74 (11)
- %2 ift> ‘T—‘ X Tq.

The latter formulas are valid in the limit ¢ > 7g. An
expression of the mean-square curvilinear segment dis-
placement in the whole time range of interest is obtained
by combining the second term of Eq. (5) and Eq. (10),
that is,

280t 2bv/Dot
(s%(1)) = —Topgs ° /Dt (12)
1+ °NT¥ \/37r + 18 ¥t

SPIN-ECHO ATTENUATION

According to Egs.
attenuation factor is

Agg(k?,t) = exp { M}

(2) and (4), the total spin-echo

72

werfe {kz“— \éf/s;(t)) } exp{—k2Dt}, (13)

where (s2(t)) is given by Eq. (12). Let us now determine
the quantity L. In the limit ¢t > 74, k — 0, Eq. (1) may
be approximated by

1
Agig(k?,t) = exp {—gkz (2R2 + 6Dt)} , (14)

where Ry = Nb?/6 is the radius of gyration. Equation
(13) may be approximated in the same limit by

Aqig(k?,t) = exp {—%k2 (\/ga\/(sz(t)) + 6Dt> } ,

(15)

where we have used the approximation erfc(z) ~ 1 —
2z /\/7 =~ exp{—2z/+/m}, which is valid for z < 1.

Equations (14) and (15) must become identical in the
limit ¢ > 74. That is,

\/gk%,/(sz(t) = KP2R2 = SNBR2. (16)

Using Eq. (11), we find
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2 /L2 1

so that

7w Nb? 3
L= §—'a— = \/;Lt ~ Lt, (18)

where L; = Nb?/a [2]. The final result of the spin-echo
attenuation by segment diffusion in the reptation-tube
model is

Agigr(K?, 1) = exp {%;z(t»}

k2 2
werfc | F-aV/(s?(8)
6v2
220¢ L+ 2vDet
14 1208t /37 4 18¥Dat’
where Dy = kgT/(, Ly = Nb%/a, D = DoyN,./(3N?),

a = by/N., and N, is the number of Kuhn segments
corresponding to the step length a of the primitive path.

}exp{—k2Dt}, (19)

(s*(t)) = (20)

DISCUSSION

In the limit ¢ >> 74, the factor exp{—k2Dt} dominates.
The spin-echo attenuation curve then corresponds to or-
dinary diffusion of the center of gravity. The opposite
limit ¢t < 74 is connected with anomalous (segment) dif-
fusion, i.e., the above factor virtually does not vary in
this time scale. The spin-echo attenuation is then gov-
erned by

k4a2(s2(t k2 37
e e R
o 2ROy LB oy

6v2
kZa4/(s2(t))

2 1 ;
™ k2ay/(s2(t)) if 6v2 > 1,

(21)

where we have used the approximations erfc(z) ~ 1 —

2z/+/7 for x < 1 and erfc(z) ~ exp{—=z2}/(z\/7) for
z > 1. Equation (21) implies the situations expected
for region II, that is, 7. < t < Tg, and region III, that
is, TR € t < 74, of the tube-reptation model [2]. For
region II, we must set (s2(t)) ~ 2by/Dot/+/37, whereas
(s2(t)) = 2Dyt/N in region III. The latter corresponds
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to a result following from the argument in [9] after cor-
rection of some errors in that reference.

Spin-echo attenuation by anomalous diffusion has also
been discussed in [10]. In this work a Gaussian propaga-
tor for Euclidean-space displacements has been assumed.
However, this assumption is not adequate for the sit-
uation in the tube-reptation model: Here the curvilin-
ear displacements inside the tube have a Gaussian char-
acter [1, 2], whereas the Euclidean-space displacements
strongly deviate from this behavior. Therefore, attempts
to apply the formalism of Ref. [10] to cases where the
tube-reptation model is assumed to be adequate neces-
sarily must lead to misinterpretations.

The spin-echo attenuation in entangled polymer melts
and solutions indicates anomalous behavior in the short
time-displacement regime [6-8, 11]. In [12] it was con-
cluded from field-gradient NMR data that the strict rep-
tation picture does not apply. However, in that study a
Gaussian propagator was used for the evaluation. If the
correct formalism presented above had been employed,
the discrepancy of the experimental finding from the pre-
dictions of the reptation-tube model would even be worse.

An evaluation attempt on this basis was published in
[7]: Although experimental data measured with poly-
dimethylsiloxane melts with different molecular weights
and in different time scales can be well described on this
basis, the fitted parameters a and b turned out to be
too large by more than one order of magnitude to be in
reasonable agreement with the reptation-tube model.

Furthermore, the results of field-cycling NMR relaxom-
etry [13, 14] strongly favors the validity of the renormal-
ized Rouse theory [15]. These studies refer to the limit
of short times, but also show that some basic assump-
tions of the Doi-Edwards tube model are not compatible
with experimental results. Beyond the short time limit
where the renormalized Rouse theory applies very well,
the correct representation of the dynamics of entangled
polymer chains is still an open question.

On the other hand, polymers confined in a network of
narrow pores such as porous glass appear to behave as
predicted by the original reptation model so far one can
judge from field-cycling NMR relaxometry [16]. Spin-
echo attenuation experiments to which the above formal-
ism is expected to be applicable are in progress.
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